
Day 02

Spatial Descriptions
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Points and Vectors
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 point : a location in space

 vector : magnitude (length) and direction between two points
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Coordinate Frames
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 choosing a frame (a point and two perpendicular vectors of 

unit length) allows us to assign coordinates
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Coordinate Frames
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 the coordinates change depending on the choice of frame
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Dot Product
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 the dot product of two vectors
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Vector Projection and Rejection
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 if u and v are unit vectors (have magnitude equal to 1) then 

the projection becomes
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Translation
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 suppose we are given o1 expressed in {0}
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Translation 1
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 the location of {1} expressed in {0}

1x̂

1ŷ
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Translation 1
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1. the translation vector      can be interpreted as the location 

of frame {j} expressed in frame {i}
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Translation 2
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 p1 expressed in {0}
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Translation 2
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2. the translation vector      can be interpreted as a coordinate 

transformation of a point from frame {j} to frame {i}
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Translation 3
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 q0 expressed in {0}
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Translation 3
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3. the translation vector      can be interpreted as an operator 

that takes a point and moves it to a new point in the same 

frame
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Rotation
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 suppose that frame {1} is rotated relative to frame {0}
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Rotation 1
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 the orientation of frame {1} expressed in {0}
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Rotation 1
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1. the rotation matrix      can be interpreted as the orientation 

of frame {j} expressed in frame {i}
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Rotation 2
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 p1 expressed in {0}
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Rotation 2
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2. the rotation matrix      can be interpreted as a coordinate 

transformation of a point from frame {j} to frame {i}
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Rotation 3
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 q0 expressed in {0}
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Rotation 3

1/8/201720

3. the rotation matrix      can be interpreted as an operator 

that takes a point and moves it to a new point in the same 

frame
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Properties of Rotation Matrices
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 RT = R-1

 the columns of R are mutually orthogonal

 each column of R is a unit vector

 det R = 1 (the determinant is equal to 1)



Rotation and Translation
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Rotations in 3D
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